ODrive Micro CAN is not working

Hi, I’m trying to use the code from the manual, but whenever I run it, the code always gets stuck on “Waiting for ODrive…”.

I’ve already tried everything listed in the troubleshooting guide for this problem, but nothing has helped. When I added a debug print statement inside the onCanMessage() function, it doesn’t output anything.I did the setup through the GUI and solder the 120 ohm jumper on the bottom of the board.

This is my wiring setup:

Could you post some screenshots of the GUI config as well as your Arduino code?







#include <Arduino.h>
#include “ODriveCAN.h”

// Documentation for this example can be found here:
// Controlling ODrive from an Arduino via CAN — ODrive Documentation 0.6.11 documentation

/* Configuration of example sketch -------------------------------------------*/

// CAN bus baudrate. Make sure this matches for every device on the bus
#define CAN_BAUDRATE 250000

// ODrive node_id for odrv0
#define ODRV0_NODE_ID 0

// Uncomment below the line that corresponds to your hardware.
// See also “Board-specific settings” to adapt the details for your hardware setup.

// #define IS_TEENSY_BUILTIN // Teensy boards with built-in CAN interface (e.g. Teensy 4.1). See below to select which interface to use.
#define IS_ARDUINO_BUILTIN // Arduino boards with built-in CAN interface (e.g. Arduino Uno R4 Minima)
// #define IS_MCP2515 // Any board with external MCP2515 based extension module. See below to configure the module.

/* Board-specific includes ---------------------------------------------------*/

#if defined(IS_TEENSY_BUILTIN) + defined(IS_ARDUINO_BUILTIN) + defined(IS_MCP2515) != 1
#warning “Select exactly one hardware option at the top of this file.”

#if CAN_HOWMANY > 0 || CANFD_HOWMANY > 0
#define IS_ARDUINO_BUILTIN
#warning “guessing that this uses HardwareCAN”
#else
#error “cannot guess hardware version”
#endif

#endif

#ifdef IS_ARDUINO_BUILTIN
// See ArduinoCore-API/api/HardwareCAN.h at master · arduino/ArduinoCore-API · GitHub
// and ArduinoCore-renesas/libraries/Arduino_CAN at main · arduino/ArduinoCore-renesas · GitHub

#include <Arduino_CAN.h>
#include <ODriveHardwareCAN.hpp>
#endif // IS_ARDUINO_BUILTIN

#ifdef IS_MCP2515
// See GitHub - sandeepmistry/arduino-CAN: An Arduino library for sending and receiving data using CAN bus.
#include “MCP2515.h”
#include “ODriveMCPCAN.hpp”
#endif // IS_MCP2515

#ifdef IS_TEENSY_BUILTIN
// See GitHub - tonton81/FlexCAN_T4: FlexCAN (CAN 2.0 / CANFD) Library for Teensy 3.x and 4.0
// clone GitHub - tonton81/FlexCAN_T4: FlexCAN (CAN 2.0 / CANFD) Library for Teensy 3.x and 4.0 into /src
#include <FlexCAN_T4.h>
#include “ODriveFlexCAN.hpp”
struct ODriveStatus; // hack to prevent teensy compile error
#endif // IS_TEENSY_BUILTIN

/* Board-specific settings ---------------------------------------------------*/

/* Teensy */

#ifdef IS_TEENSY_BUILTIN

FlexCAN_T4<CAN1, RX_SIZE_256, TX_SIZE_16> can_intf;

bool setupCan() {
can_intf.begin();
can_intf.setBaudRate(CAN_BAUDRATE);
can_intf.setMaxMB(16);
can_intf.enableFIFO();
can_intf.enableFIFOInterrupt();
can_intf.onReceive(onCanMessage);
return true;
}

#endif // IS_TEENSY_BUILTIN

/* MCP2515-based extension modules -*/

#ifdef IS_MCP2515

MCP2515Class& can_intf = CAN;

// chip select pin used for the MCP2515
#define MCP2515_CS 10

// interrupt pin used for the MCP2515
// NOTE: not all Arduino pins are interruptable, check the documentation for your board!
#define MCP2515_INT 2

// freqeuncy of the crystal oscillator on the MCP2515 breakout board.
// common values are: 16 MHz, 12 MHz, 8 MHz
#define MCP2515_CLK_HZ 8000000

static inline void receiveCallback(int packet_size) {
if (packet_size > 8) {
return; // not supported
}
CanMsg msg = {.id = (unsigned int)CAN.packetId(), .len = (uint8_t)packet_size};
CAN.readBytes(msg.buffer, packet_size);
onCanMessage(msg);
}

bool setupCan() {
// configure and initialize the CAN bus interface
CAN.setPins(MCP2515_CS, MCP2515_INT);
CAN.setClockFrequency(MCP2515_CLK_HZ);
if (!CAN.begin(CAN_BAUDRATE)) {
return false;
}

CAN.onReceive(receiveCallback);
return true;
}

#endif // IS_MCP2515

/* Arduinos with built-in CAN */

#ifdef IS_ARDUINO_BUILTIN

HardwareCAN& can_intf = CAN;

bool setupCan() {
return can_intf.begin((CanBitRate)CAN_BAUDRATE);
}

#endif

/* Example sketch ------------------------------------------------------------*/

// Instantiate ODrive objects
ODriveCAN odrv0(wrap_can_intf(can_intf), ODRV0_NODE_ID); // Standard CAN message ID
ODriveCAN* odrives = {&odrv0}; // Make sure all ODriveCAN instances are accounted for here

struct ODriveUserData {
Heartbeat_msg_t last_heartbeat;
bool received_heartbeat = false;
Get_Encoder_Estimates_msg_t last_feedback;
bool received_feedback = false;
};

// Keep some application-specific user data for every ODrive.
ODriveUserData odrv0_user_data;

// Called every time a Heartbeat message arrives from the ODrive
void onHeartbeat(Heartbeat_msg_t& msg, void* user_data) {
ODriveUserData* odrv_user_data = static_cast<ODriveUserData*>(user_data);
odrv_user_data->last_heartbeat = msg;
odrv_user_data->received_heartbeat = true;
}

// Called every time a feedback message arrives from the ODrive
void onFeedback(Get_Encoder_Estimates_msg_t& msg, void* user_data) {
ODriveUserData* odrv_user_data = static_cast<ODriveUserData*>(user_data);
odrv_user_data->last_feedback = msg;
odrv_user_data->received_feedback = true;
}

// Called for every message that arrives on the CAN bus
void onCanMessage(const CanMsg& msg) {
Serial.println(“MSG”);
for (auto odrive: odrives) {
onReceive(msg, *odrive);
}
}

void setup() {
Serial.begin(115200);

// Wait for up to 3 seconds for the serial port to be opened on the PC side.
// If no PC connects, continue anyway.
for (int i = 0; i < 30 && !Serial; ++i) {
delay(100);
}
delay(200);

Serial.println(“Starting ODriveCAN demo”);

// Register callbacks for the heartbeat and encoder feedback messages
odrv0.onFeedback(onFeedback, &odrv0_user_data);
odrv0.onStatus(onHeartbeat, &odrv0_user_data);

// Configure and initialize the CAN bus interface. This function depends on
// your hardware and the CAN stack that you’re using.
if (!setupCan()) {
Serial.println(“CAN failed to initialize: reset required”);
while (true); // spin indefinitely
}

Serial.println(“Waiting for ODrive…”);
while (!odrv0_user_data.received_heartbeat) {
pumpEvents(can_intf);
}

Serial.println(“found ODrive”);

// request bus voltage and current (1sec timeout)
Serial.println(“attempting to read bus voltage and current”);
Get_Bus_Voltage_Current_msg_t vbus;
if (!odrv0.request(vbus, 1000)) {
Serial.println(“vbus request failed!”);
while (true); // spin indefinitely
}

Serial.print("DC voltage [V]: ");
Serial.println(vbus.Bus_Voltage);
Serial.print("DC current [A]: ");
Serial.println(vbus.Bus_Current);

Serial.println(“Enabling closed loop control…”);
while (odrv0_user_data.last_heartbeat.Axis_State != ODriveAxisState::AXIS_STATE_CLOSED_LOOP_CONTROL) {
odrv0.clearErrors();
delay(1);
odrv0.setState(ODriveAxisState::AXIS_STATE_CLOSED_LOOP_CONTROL);

// Pump events for 150ms. This delay is needed for two reasons;
// 1. If there is an error condition, such as missing DC power, the ODrive might
//    briefly attempt to enter CLOSED_LOOP_CONTROL state, so we can't rely
//    on the first heartbeat response, so we want to receive at least two
//    heartbeats (100ms default interval).
// 2. If the bus is congested, the setState command won't get through
//    immediately but can be delayed.
for (int i = 0; i < 15; ++i) {
  delay(10);
  pumpEvents(can_intf);
}

}

Serial.println(“ODrive running!”);
}

void loop() {
pumpEvents(can_intf); // This is required on some platforms to handle incoming feedback CAN messages
// Note that on MCP2515-based platforms, this will delay for a fixed 10ms.
//
// This has been found to reduce the number of dropped messages, however it can be removed
// for applications requiring loop times over 100Hz.

float SINE_PERIOD = 2.0f; // Period of the position command sine wave in seconds

float t = 0.001 * millis();

float phase = t * (TWO_PI / SINE_PERIOD);

odrv0.setPosition(
sin(phase), // position
cos(phase) * (TWO_PI / SINE_PERIOD) // velocity feedforward (optional)
);

// print position and velocity for Serial Plotter
if (odrv0_user_data.received_feedback) {
Get_Encoder_Estimates_msg_t feedback = odrv0_user_data.last_feedback;
odrv0_user_data.received_feedback = false;
Serial.print(“odrv0-pos:”);
Serial.print(feedback.Pos_Estimate);
Serial.print(“,”);
Serial.print(“odrv0-vel:”);
Serial.println(feedback.Vel_Estimate);
}
}

Hmm, well this all looks right. Would you mind sending a few pictures of your wiring? And do you have an oscilloscope or logic analyzer or anything like that?

this is what I get if I connect CANL and CANH from odrive to logic analyzer